回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多-七年级数学
题文
回答下列问题: (1)如图所示的甲、乙两个平面图形能折什么几何体? (2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律? (3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数. |
答案
(1)甲是长方体,乙是五棱锥;(2)顶点数+面数-棱数=2;(3)22 |
试题分析:(1)根据平面图形的展开图的特征即可作出判断; (2)分别数出甲、乙两个平面图形围成的几何体的面数、顶点个数、棱数,即可得到规律; (3)设这个多面体的面数为,根据(2)中得到的规律即可列方程求解. (1)甲是长方体,乙是五棱锥; (2)甲:f=6,e=12,v=8,f+v–e="2" 乙:f=6,e=10,v=6,f+v–e=2 规律:顶点数+面数-棱数=2; (3)设这个多面体的面数为,由题意得 ++8-50=2,解得=22 答:这个几何体的面数为22. 点评:本题属于基础应用题,只需学生熟练掌握欧拉公式,即可完成. |
据专家权威分析,试题“回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(..”主要考查你对 认识立体几何图形,几何体的展开图,几何体的表面积,体积,截一个几何体 等考点的理解。关于这些考点的“档案”如下:
认识立体几何图形几何体的展开图几何体的表面积,体积截一个几何体
考点名称:认识立体几何图形
- 立体几何图形:
从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学研究的主要对象之一。有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个体最多看到立体图形实物三个面。 - 常见立体几何图形及性质:
①正方体:
有8个顶点,6个面。每个面面积相等(或每个面都有正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)
②长方体:
有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。
③圆柱:
上下两个面为大小相同的圆形。有一个曲面叫侧面。展开后为长方形或正方形或平行四边形。有无数条高,这些高的长度都相等。
④圆锥:
有1个顶点,1个曲面,一个底面。展开后为扇形。只有1条高。四面体有1个顶点,四面六条棱高。
⑤直三棱柱:
三条侧棱切平行,上表面和下表面是平行且全等的三角形。
⑥球:
球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。 - 常见的立体几何图形视图:
几何图形 图形 长方体 正方体 圆锥 圆柱 圆锥 球
考点名称:几何体的展开图
- 有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
几何体展开图规律:
1.沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;
2.同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图。
注意:
①正方体展开头记忆口诀:
正方体盒巧展开,六个面儿七刀裁;
十四条边布周围,十一类图记分明;
四方成线两相卫,六种图形巧组合;
跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
②在正方体的展开图中,一条直线上的小正方形不会超过四个。
③正方体的展开图不会有"田"字形,"凹"字形的形状。- 图形展开图:
1.圆柱展开图:
→→
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |