用下列两种正多边形能拼地板的是()A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形-八年级数学

首页 > 考试 > 数学 > 初中数学 > 认识平面图形/2020-01-02 / 加入收藏 / 阅读 [打印]

题文

用下列两种正多边形能拼地板的是(   )
A.正三角形和正八边形B.正方形和正八边形
C.正六边形和正八边形D.正十边形和正八边形

题型:单选题  难度:偏易

答案

B


试题考查知识点:这是镶嵌问题
思路分析:假设用两种可以进行镶嵌,则密铺成的图形在拼接点处所有的角之和应是360
具体解答过程:
不难推算:正三角形的一个内角为60°;正方形的一个内角为90°;正八边形的一个内角为180°-=135°;正十边形的一个内角为180°-=144°
A、若边长相等的正三角形和正八边形进行镶嵌,假设用m个正三角形和n个正八边形(m、n均为正整数),则60m+135n=360,即4m+9n=24,显然此方程无正整数解;故正三角形和正八边形不能拼地板(镶嵌);
B、若边长相等的正方形和正八边形进行镶嵌,假设用m个正方形和n个正八边形(m、n均为正整数),则90m+135n=360,即6m+9n=24,可以看出m=1,n=2;这就是说1个正方形可以和2个正八边形拼地板(镶嵌);
C、若边长相等的正六边形和正八边形进行镶嵌,假设用m个正六边形和n个正八边形(m、n均为正整数),则120m+135n=360,即8m+9n=24,显然此方程无正整数解;故正六边形和正八边形不能拼地板(镶嵌);
D、若边长相等正十边形和正八边形进行镶嵌,假设用m个正十边形和n个正八边形(m、n均为正整数),则144m+135n=360,即16m+15n=40,显然此方程无正整数解;故正十边形和正八边形不能拼地板(镶嵌);
综上所述,只有正方形和正八边形可以拼地板(镶嵌)。
故选B
试题点评:抓住问题的关键,是解决问题的不二法门。

据专家权威分析,试题“用下列两种正多边形能拼地板的是()A.正三角形和正八边形B.正方形..”主要考查你对  认识平面图形,几何体的展开图,几何体的表面积,体积,点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

认识平面图形几何体的展开图几何体的表面积,体积点、线、面、体

考点名称:认识平面图形

  • 平面图形:
    有些几何图形(如线段、角、三角形、长方形、圆等)的各个部分都在同一平面内,它们是平面图形。
    如直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆都是几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。
    例如:有一组对边平行的四边形一定是平面图形。(两条平行线确定一个平面)
    平面图形的大小,叫做它们的面积
    点的形成是线,线的形成是面,面的形成是体。

  • 平面图形分类:

  • 常见的平面图形图示:

    从左到右依次为:长方形、正方形、三角形、圆、椭圆、
                                 菱形、五边形、六边形。

  • 几何图形知识体系图:

考点名称:几何体的展开图

  • 有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  • 几何体展开图规律:
    1.沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;
    2.同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图。
    注意:
    ①正方体展开头记忆口诀:
    正方体盒巧展开,六个面儿七刀裁;
    十四条边布周围,十一类图记分明;
    四方成线两相卫,六种图形巧组合;
    跃马失蹄四分开;两两错开一阶梯。
    对面相隔不相连,识图巧排“7”、“凹”、“田”。
    ②在正方体的展开图中,一条直线上的小正方形不会超过四个。
    ③正方体的展开图不会有"田"字形,"凹"字形的形状。

  • 图形展开图:
    1.圆柱展开图:
    →→
    2.圆锥展开图:
    →→
    3.长方体展开图:
    →→
    4.正方体展开图:
    →→
    5.三棱柱展开图:
    →→
    6.三棱锥展开图:
    →→
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐