如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,()∴AD∥EG,()∴∠1=∠2,()=∠3,()又∵∠E=∠1,()∴∠2=∠3()∴AD平分∠BAC.-七年级数学
题文
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC. 理由如下:∵AD⊥BC于D,EG⊥BC于G,( 已知 ) ∴∠ADC=∠EGC=90°,( ) ∴AD∥EG,( ) ∴∠1=∠2,( ) =∠3,( ) 又∵∠E=∠1,( ) ∴∠2=∠3 ( ) ∴AD平分∠BAC.( ) |
答案
垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;已知;等量代换;角平分线定义 |
试题分析:根据垂直的定义、平行线的判定和性质、角平分线的性质依次分析即可. ∵AD⊥BC于D,EG⊥BC于G,(已知) ∴∠ADC=∠EGC=90°,( 垂直的定义 ) ∴AD∥EG,( 同位角相等,两直线平行 ) ∴∠1=∠2,( 两直线平行,内错角相等 ) ∠E=∠3,( 两直线平行,同位角相等 ) 又∵∠E=∠1( 已知 ) ∴∠2=∠3( 等量代换 ) ∴AD平分∠BAC( 角平分线定义 ). 点评:平行线的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握. |
据专家权威分析,试题“如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD..”主要考查你对 点、线、面、体 等考点的理解。关于这些考点的“档案”如下:
点、线、面、体
考点名称:点、线、面、体
- 点动成线,线动成面,面动成体:
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
包围着体的是面,面有平的面和曲的面两种。
夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线。
天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。 - 常见几何体的三视图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,则第⑩个图形中平行四边形的个数是A.54B.110C.19D.109-七年级数学
下一篇:“同位角相等”的逆命题是_____________________。-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |