计算:(1)50°24′×3-98°12′25″;(2)30÷()+(-1)2011÷×10;(3)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(4)1-2(1-2x+x2)+3(-x2+x-1);(5)解方程:2(x-2)-3(4x-1)=5(1-x);(6)解方程:-七年级数学
题文
计算: (1)50°24′×3-98°12′25″; (2)30÷()+(-1)2011÷×10; (3)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); (4)1-2(1-2x+x2)+3(-x2+x-1); (5)解方程:2(x-2)-3(4x-1)=5(1-x); (6)解方程: |
答案
解:(1)原式=52°59′35″; (2)原式=-800; (3)原式=-; (4)原式=-5x2+7x-4; (5)x=-; (6)x=-。 |
据专家权威分析,试题“计算:(1)50°24′×3-98°12′25″;(2)30÷()+(-1)2011÷×10;(3)(-2)3+..”主要考查你对 有理数的混合运算,整式的加减,一元一次方程的解法,角的概念 等考点的理解。关于这些考点的“档案”如下:
有理数的混合运算整式的加减一元一次方程的解法角的概念
考点名称:有理数的混合运算
- 有理数的混合运算:
是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。 - 有理数混合运算的规律:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。
考点名称:整式的加减
- 整式的加减:
其实质是去括号和合并同类项,其一般步骤为:
(1)如果有括号,那么先去括号;
(2)如果有同类项,再合并同类项。
注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。 - 整式加减:
整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。 - 整式的乘除法:
考点名称:一元一次方程的解法
- 使方程左右两边相等的未知数的值叫做方程的解。
- 解一元一次方程的注意事项:
1、分母是小数时,根据分数的基本性质,把分母转化为整数;
2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
3、去括号时,不要漏乘括号内的项,不要弄错符号;
4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
7、分、小数运算时不能嫌麻烦;
8、不要跳步,一步步仔细算 。 解一元一次方程的步骤:
一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
依据:等式的性质2
⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质1
⒋ 合并同类项:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解
依据:等式的性质2方程的同解原理 :
如果两个方程的解相同,那么这两个方程叫做同解方程。
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:
⒈认真 审题(审题)
⒉分析已知和未知量
⒊找一个合适的 等量关系
⒋设一个恰当的未知数
⒌列出合理的方程 (列式)
⒍解出方程(解题)
⒎ 检验
⒏写出答案(作答)例:ax=b(a、b为常数)?
解:当a≠0,b=0时,
ax=0
x=0(此种情况与下一种一样)
当a≠0时,x=b/a。
当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
例:
(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小 公倍数)得:
5(3x+1)-10×2=(3x-2)-2(2x+3)
去括号得:
15x+5-20=3x-2-4x-6
移项得:
15x-3x+4x=-2-6-5+20
合并同类项得:
16x=7
系数化为1得:
x=7/16。注:字母公式(等式的性质)
a=b a+c=b+c a-c=b-c (等式的性质1)
a=b ac=bc
a=bc(c≠0)= a÷c=b÷c(等式的性质2)
检验 算出后需检验的。
求根公式
由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。
但对于标准形式下的一元一次方程 ax+b=0
可得出求根公式x=-(b/a)
考点名称:角的概念
角的基本概念:
从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
②角的大小可以度量,可以比较。
③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。- 角的分类:
根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
平角:180。的角,当角的两边在一条直线上时,组成的角叫做平角。即射线OA绕点O旋转,当终边在始边OA的反向延长线上时所成的角;
直角:90。的角,即线OA绕点O旋转,当终边与始边垂直时所成的角,平角的一半叫做直角;
锐角:大于0。小于90。的角,小于直角的角叫做锐角;
钝角:大于90。小于180。的角,大于直角且小于平角的角叫做钝角。
周角:360。的角,即射线OA绕点O旋转,当终边与始边重合时所成的角。
角的性质:
①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;
②角的大小可以度量,可以比较;
③角可以参与运算。
角的度量:
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“。”,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”。1°=60′=3600″。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |