我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≥0时,n!=n(n﹣1)(n﹣2)…2×1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先-七年级数学
题文
我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≥0时,n!=n(n﹣1)(n﹣2)…2×1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720. 又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”. 按照以上的定义和运算顺序,计算: (1)4!= _________ ; (2)=_________; (3)(3+2)!﹣4!=_________; (4)用具体数试验一下,看看等式(m+n)!=m!+n!是否成立? |
答案
解:(1)4!=4×3×2×1=24; (2)=; (3)(3+2)!﹣4!=5×4×3×2×1﹣4×3×2×1=120﹣24=96; (4)如当m=3,n=2时,(m+n)!=(3+2)!=120,m!+n!=3!+2!=8.,(m+n)!≠m!+n!,等式(m+n)!=m!+n!不成立. |
据专家权威分析,试题“我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≥0时,n!..”主要考查你对 有理数的混合运算,有理数乘法,有理数的乘除混合运算 等考点的理解。关于这些考点的“档案”如下:
有理数的混合运算有理数乘法有理数的乘除混合运算
考点名称:有理数的混合运算
- 有理数的混合运算:
是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。 - 有理数混合运算的规律:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。
考点名称:有理数乘法
- 有理数乘法定义:
求两个有理数因数的积的运算叫做有理数的乘法。 - 有理数乘法的法则:
(1)同号两数相乘,取正号,并把绝对值相乘;
(2)异号两数相乘,取负号,并把绝对值相乘;
(3)任何数与0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有理数乘法的运算律:
(1)交换律:ab=ba;
(2)结合律:(ab)c=a(bc);
(3)分配律:a(b+c)=ab+ac。 - 记住乘法符号法则:
1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
2.几个数相乘,只要有一个数为0,积就是0。
乘法法则的推广:
1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
2.几个数相乘,有一个因数为零,积就为零;
3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。
有理数乘法的注意:
1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。
考点名称:有理数的乘除混合运算
- 有理数的乘除混合运算:
可统一化为乘法运算,在进行乘除运算时,一般地,遇除化乘,转化为有理数的乘法进行计算。 - 乘除混合运算需要掌握:
1.由负因数的个数确定符号;
2.小数化成分数,带分数化成假分数;
3.除号改成称号,除号改成倒数,变成连乘形式;
4.进行约分;
5.注意运算顺序,乘除为同级运算,要遵守从左到右的顺序计算;
6.转化为乘法后,可运用乘法运算律简化运算。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |