下列说法正确的是[]A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.同一平面内,过一点有且只有一条直线与已知直线垂直D.与同一条直线-七年级数学

首页 > 考试 > 数学 > 初中数学 > 平行线的判定/2020-01-06 / 加入收藏 / 阅读 [打印]

题文

下列说法正确的是
[     ]
A.两点之间的距离是两点间的线段
B.同一平面内,过一点有且只有一条直线与已知直线平行
C.同一平面内,过一点有且只有一条直线与已知直线垂直
D.与同一条直线垂直的两条直线也垂直
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“下列说法正确的是[]A.两点之间的距离是两点间的线段B.同一平面内..”主要考查你对  平行线的判定,平行线之间的距离  等考点的理解。关于这些考点的“档案”如下:

平行线的判定平行线之间的距离

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

考点名称:平行线之间的距离

  • 两条平行线之间的距离:
    是指从两条平行直线中的一条直线上的一点作另一条直线的垂线段的长;
    注:
    ①能表示两条平行线之间的距离的线段与这两条平行线都垂直;
    ②平行线的位置确定之后,它们之间的距离是定值,它不随垂线段位置的改变而改变;
    ③平行线间的距离处处相等。

  • 三种距离定义:
    1.两点间的距离——连接两点的线段的长度;
    2.点到直线的距离——直线外一点到这条直线的垂线段的长度;
    3.两平行线的距离——两天平行线中,一条直线上的点到另一条直线的垂线段长度。

    两直线间的距离公式:
    设两条直线方程为
    Ax+By+C1=0
    Ax+By+C2=0
    则其距离公式为|C1-C2|/√(A2+B2)
    推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,
    则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为
    d=|Aa+Bb+C2|/√(A2+B2)=|-C1+C2|/√(A2+B2)
    =|C1-C2|/√(A2+B2)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐