如图:AC⊥CE于C,DE⊥CE于E,∠1=40°.(1)求∠2,∠3的度数;(2)AC与DE平行吗?说明理由.-七年级数学

首页 > 考试 > 数学 > 初中数学 > 平行线的判定/2020-01-06 / 加入收藏 / 阅读 [打印]

题文

如图:AC⊥CE于C,DE⊥CE于E,∠1=40°.
(1)求∠2,∠3的度数;
(2)AC与DE平行吗?说明理由.

题型:解答题  难度:中档

答案

解:(1)∵AC⊥CE于C,
∴∠ACB=90°,
∴∠ABC=180°﹣∠ACB﹣∠1=180°﹣90°﹣40°=50°,
∵∠ABC和∠2是对顶角,
∴∠ABC和2=50°;
∵∠2和∠3在同一条直线上,
∴∠3=180°﹣∠2=180°﹣50°=130°;
(2)AC∥DE,
∵AC⊥CE于C,DE⊥CE于E,
∴∠ACB=90°,∠DEB=90°,
∴∠ACB=∠DEB,
∴AC∥DE.

据专家权威分析,试题“如图:AC⊥CE于C,DE⊥CE于E,∠1=40°.(1)求∠2,∠3的度数;(2)AC与DE..”主要考查你对  平行线的判定,垂直的判定与性质,三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

平行线的判定垂直的判定与性质三角形的内角和定理

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐