按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,-数学

首页 > 考试 > 数学 > 初中数学 > 平行线的判定/2020-01-06 / 加入收藏 / 阅读 [打印]

题文

按要求完成作图,并回答问题;如图在△ABC中:
(1)过点A画BC的垂线,垂足为E;
(2)画∠ABC的平分线,交AC于F;
(3)过E画AB的平行线,交AC于点G;
(4)过点C画AB所在的直线的垂线段,垂足为H.

题型:解答题  难度:中档

答案



(1)作法利用量角器测得∠AOC=90°,AE即为所求;
(2)作法:
①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.
②分别以点M,N为圆心,以大于
1
2
MN的长度为半径画弧,两弧交于点P
③作射线BP,则射线BP为角ABC的角平分线;
④射线BP交AC于点F;
(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;
(4)作法:利用量角器测得∠BHC=90°,CH即为所求.

据专家权威分析,试题“按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,..”主要考查你对  平行线的判定,垂直的判定与性质  等考点的理解。关于这些考点的“档案”如下:

平行线的判定垂直的判定与性质

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐