如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延-数学

首页 > 考试 > 数学 > 初中数学 > 平行线的判定/2020-01-06 / 加入收藏 / 阅读 [打印]

题文

如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=

EF.以下是他的想法,请你填上根据.
小华是这样想的:因为CF和BE相交于点O,
根据______,得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据______,得出△COB≌△FOE,
根据______,得出BC=EF,
根据______,得出∠BCO=∠F,
既然∠BCO=∠F根据______,得出AB∥DF,
既然AB∥DF,根据______,得出∠ACE和∠DEC互补.
题型:解答题  难度:中档

答案

根据对顶角相等得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据两边对应相等且夹角相等的两三角形全等得出△COB≌△FOE,
根据全等三角形对应边相等得出BC=EF,
根据全等三角形对应角相等得出∠BCO=∠F,
既然∠BCO=∠F根据内错角相等,两直线平行、得出AB∥DF,
既然AB∥DF,根据两直线平行,同旁内角互补.得出∠ACE和∠DEC互补.

据专家权威分析,试题“如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是..”主要考查你对  平行线的判定  等考点的理解。关于这些考点的“档案”如下:

平行线的判定

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐