先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕迹)①作∠ACB的平分线CD,交AB于点D;②延长BC到点E,使CE=CA,连接AE;(2)求证:CD∥AE.-数学
题文
先作图,再证明. (1)在所给的图形(如图)中完成下列作图(保留作图痕迹) ①作∠ACB的平分线CD,交AB于点D; ②延长BC到点E,使CE=CA,连接AE; (2)求证:CD∥AE. |
答案
(1)利用尺规作图,如右图; ①1.以∠ACB的顶点C为圆心0,任意长为半径画弧.交于两边于点G,F; 2.截取GF长度,以GF长为半径,分别以点G,点F为圆心画弧,两弧交点为点D; 3.连接CD. 射线CD就是所要求作的. ②延长BC到点E,使CE=CA,连接AE. (2)证明:∵AC=CE,AC⊥CE, ∴△ACE为等腰直角三角形, ∴∠CAE=45°. 又∵CD平分∠ACB. ∴∠ACD=45°. ∴∠ACD=∠CAE. ∴CD∥AE. |
据专家权威分析,试题“先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕..”主要考查你对 平行线的判定 等考点的理解。关于这些考点的“档案”如下:
平行线的判定
考点名称:平行线的判定
- 平行线的概念:
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
注意:
①平行线是无限延伸的,无论怎样延伸也不相交。
②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。 平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |