如图所示,在梯形ABCD中,AB∥DC,DA⊥AB,∠B=45°,延长CD到点E,使DE=DA,连接AE。(1)求证:AE//BC;(2)若AB=3,CD=1,求四边形ABCE的面积。-九年级数学

题文

如图所示,在梯形ABCD中,AB∥DC,DA⊥AB,∠B=45°,延长CD到点E,使DE=DA,连接AE。
(1)求证:AE//BC;
(2)若AB=3,CD=1,求四边形ABCE的面积。

题型:解答题  难度:中档

答案

解:(1)∵AB∥DC,DA⊥AB,∠B=45°,
∴∠C=135°,
DA⊥DE,
又∵DE=DA,
∴∠E=45°,
∴∠C+∠E=18°,
∴AE//BC;
(2)∵AE∥BC,CE∥AB,
∴四边形ABCE是平行四边形,
∴CE=AB=3,
∴DA=DF=CE-CD=2,
∴S□ABCE=CE.AD=3×2=6。

据专家权威分析,试题“如图所示,在梯形ABCD中,AB∥DC,DA⊥AB,∠B=45°,延长CD到点E,使..”主要考查你对  平行线的性质,平行线的公理,平行四边形的性质  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理平行四边形的性质

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:平行四边形的性质

  • 平行四边形的概念:
    两组对边分别平行的四边形叫做平行四边形。
    平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
    ①平行四边形属于平面图形。
    ②平行四边形属于四边形。
    ③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
    ④平行四边形属于中心对称图形。

  • 平行四边形的性质:
    主要性质
    (矩形、菱形、正方形都是特殊的平行四边形。)
    (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
    (简述为“平行四边形的两组对边分别相等”)
    (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
    (简述为“平行四边形的两组对角分别相等”)
    (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
    (简述为“平行四边形的邻角互补”)
    (4)夹在两条平行线间的平行线段相等。
    (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
    (简述为“平行四边形的对角线互相平分”)
    (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
    (7)平行四边形的面积等于底和高的积。(可视为矩形)
    (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
    (9)平行四边形是中心对称图形,对称中心是两对角线的交点.
    (10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
    注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

    (11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
    (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
    (13)平行四边形对角线把平行四边形面积分成四等分。
    (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
    (15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐