如图1,MA1∥NA2,则∠A1+∠A2=()度。如图2,MA1∥NA3,则∠A1+∠A2+∠A3=()度。如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=()度。如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=()度。从上述结论-七年级数学
题文
如图1,MA1∥NA2,则∠A1+∠A2=( )度。 如图2,MA1∥NA3,则∠A1+∠A2+∠A3=( )度。 如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=( )度。 如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=( )度。从上述结论中你发现了什么规律? 如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=( )。 |
答案
解:180 ;360 ;540;720 ;发现的规律:如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=180(n﹣1)度;180(n﹣1)。 |
据专家权威分析,试题“如图1,MA1∥NA2,则∠A1+∠A2=()度。如图2,MA1∥NA3,则∠A1+∠A2+∠A..”主要考查你对 平行线的性质,平行线的公理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:下列说法正确的是[]A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c-七年级数学
下一篇:如下图,AB∥CD,直线PQ交AB、CD于点M、N,ME平分∠AMQ,NF平分∠CNP,猜想ME与NF的位置关系,并说明你的理由。-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |