如下图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合。记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3。(1)若点P在图(1)位置时,求证:∠3=∠-七年级数学

题文

如下图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合。记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3。
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;
(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系。
题型:解答题  难度:中档

答案

解:(1)证明:过P作PQ∥l1∥l2
由两直线平行,内错角相等,可得:
∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPE+∠QPF,
∴∠3=∠1+∠2。
(2)∠3=∠2﹣∠1;
证明:过P作直线PQ∥l1∥l2
则:∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPF﹣∠QPE,
∴∠3=∠2﹣∠1。

(3)∠3=360°﹣∠1﹣∠2。
证明:过P作PQ∥l1∥l2
同(1)可证得:∠3=∠CEP+∠DFP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠CEP+∠DFP+∠1+∠2=360°,
即∠3=360°﹣∠1﹣∠2。
(4)过P作PQ∥l1∥l2
①当P在C点上方时,
同(2)可证:∠3=∠DFP﹣∠CEP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠DFP﹣∠CEP+∠2﹣∠1=0,
即∠3=∠1﹣∠2。
②当P在D点下方时,
∠3=∠2﹣∠1,解法同上。
综上可知:当P在C点上方时,∠3=∠1﹣∠2,
当P在D点下方时,∠3=∠2﹣∠1。

据专家权威分析,试题“如下图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点..”主要考查你对  平行线的性质,平行线的公理,三角形的外角性质  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理三角形的外角性质

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐