已知:如图,∠1=40°,∠2=65°,AB∥DC,求:∠ADC和∠A的度数.-七年级数学
题文
已知:如图,∠1=40 °,∠2=65 °,AB∥DC,求:∠ADC和∠A的度数. |
答案
解:(1)∵AB∥DC, ∴∠1=∠BDC=40°(两直线平行,内错角相等), 又∠2=65°, ∴∠ADC=∠2+∠BDC=105°; (2)据三角形内角和定理,可得: ∠A=180°﹣∠1﹣∠2=75°: |
据专家权威分析,试题“已知:如图,∠1=40°,∠2=65°,AB∥DC,求:∠ADC和∠A的度数.-七年级数..”主要考查你对 平行线的性质,平行线的公理,三角形的内角和定理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理三角形的内角和定理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
考点名称:三角形的内角和定理
- 三角形的内角和定理及推论:
三角形的内角和定理:三角形三个内角和等于180°。
推论:
(1)直角三角形的两个锐角互余。
(2)三角形的一个外角等于和它不相邻的来两个内角的和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:一辆轿车在公路上行驶,它经过两次拐弯后仍在原来的方向上前进,那么,这两次拐弯的角度是下列哪一种[]A.第一次向右拐60°,第二次向右拐120°B.第一次向右拐60°,第二次向左拐-七年级数学
下一篇:如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |