如图,在△ABC中,AB+AC=20,M、N分别为BC、AC的中点,AD是∠BAC的平分线,ME∥AD交AC于E,求EC的长.-数学

题文

如图,在△ABC中,AB+AC=20,M、N分别为BC、AC的中点,AD是∠BAC的平分线,ME∥AD交AC于E,求EC的长.

题型:解答题  难度:中档

答案



过C作CQ∥AD交BA的延长线于Q,
∴∠BAD=∠Q,∠DAC=∠ACQ,
∵AD是∠BAC的平分线,
∴∠BAD=∠DAC,
∴∠Q=∠ACQ,
∴AC=AQ,
∵AD∥CQ,
AB
AQ
=
DB
DC

AB
AC
=
BD
DC

AB+AC
AC
=
BC
DC

∵AB+AC=20,M为BC的中点,
20
AC
=
2MC
DC

∵ME∥AD,
MC
DC
=
EC
AC

20
AC
=
2EC
AC

解得:EC=10,
答:EC的长是10.

据专家权威分析,试题“如图,在△ABC中,AB+AC=20,M、N分别为BC、AC的中点,AD是∠BAC的..”主要考查你对  平行线的性质,平行线的公理,等腰三角形的性质,等腰三角形的判定,三角形中位线定理,比例的性质  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理等腰三角形的性质,等腰三角形的判定三角形中位线定理比例的性质

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐