如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F.(1)试判断四边形AECF的形状,并说明理由.(2)若EF⊥AC,试判断四边形AECF的形状,并说明理由.(3)请添加一-数学
题文
如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F. (1)试判断四边形AECF的形状,并说明理由. (2)若EF⊥AC,试判断四边形AECF的形状,并说明理由. (3)请添加一个EF与AC满足的条件,使四边形AECF是矩形,并说明理由. |
题文
如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F. (1)试判断四边形AECF的形状,并说明理由. (2)若EF⊥AC,试判断四边形AECF的形状,并说明理由. (3)请添加一个EF与AC满足的条件,使四边形AECF是矩形,并说明理由. |
题型:解答题 难度:中档
答案
(1)四边形AECF的形状是平行四边形, 理由是:∵平行四边形ABCD, ∴AD∥BC, ∴∠DAO=∠ACF,∠AEO=∠CFO, ∵EF过AC的中点O, ∴OA=OC, 在△AEO和△CFO中
∴△AEO≌△CFO, ∴OE=OF, ∵OA=CO, ∴四边形AECF是平行四边形, (2)四边形AECF是菱形, 理由是:由(1)知四边形AECF是平行四边形, ∵EF⊥AC, ∴四边形AECF是菱形. (3)添加条件:EF=AC, 理由是:由(1)知四边形AECF是平行四边形, ∵EF=AC, ∴四边形AECF是矩形. |
据专家权威分析,试题“如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点..”主要考查你对 平行线的性质,平行线的公理,矩形,矩形的性质,矩形的判定,菱形,菱形的性质,菱形的判定 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理矩形,矩形的性质,矩形的判定菱形,菱形的性质,菱形的判定
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
考点名称:矩形,矩形的性质,矩形的判定
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
考点名称:菱形,菱形的性质,菱形的判定
菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。
菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |