如图,AB∥CD,在AB与CD之间任意找一点E,连接AE,CE(说明:AB,CD都为线段),自己画出图形并探索下面问题:(1)试问∠AEC与∠C有何种关系?请猜想并给出证明.(2)当E点在平行线AB,-数学

题文

如图,AB∥CD,在AB与CD之间任意找一点E,连接AE,CE(说明:AB,CD都为线段),自己画出图形并探索下面问题:
(1)试问∠AEC与∠C有何种关系?请猜想并给出证明.
(2)当E点在平行线AB,CD的外部时,上一问的结论是否仍然成立?画图探索并予以证明.

题型:解答题  难度:中档

答案



如图所示,
(1)∠AEC=∠A+∠C.
证明:过点E作EF∥AB,
∴∠1=∠A;
又已知AB∥CD,
∴EF∥CD(平行公理),
∴∠2=∠C;
又∵∠AEC=∠1+∠2,
∴∠AEC=∠A+∠C.

(2)不成立,结论应是∠A=∠AEC+∠C或∠C=∠AEC+∠A.


证明:如果E在CD下方,过E作EM∥AB∥CD,
那么可得出∠A=∠AEM,∠C=∠MEC,
∵∠AEM=∠AEC+∠MEC,
∴∠A=∠AEC+∠C,
如果E在AB上方,证法同上,可得出的结论是∠C=∠AEC+∠A.
当点E在点A和点C左侧时∠A+∠AEC+∠C=360°.

据专家权威分析,试题“如图,AB∥CD,在AB与CD之间任意找一点E,连接AE,CE(说明:AB,CD..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐