下列命题中是真命题的是()A.三角形的一个外角大于任何一个内角B.如果|a|>|b|,则a>bC.两直线平行,同旁内角的平分线互相垂直D.垂直于同一条直线的两条直线垂直-数学
题文
下列命题中是真命题的是( )
|
答案
A、三角形的外角大于任何一个不相邻的内角,故本选项错误. B、|-5|>|1|,但-5<1,故本选项错误. C、两直线平行,同旁内角的和为180°,所以他们角平分线的和为90°,故本选项正确. D、在同一平面内,垂直于同一直线的两条平行,故本选项错误. 故选C. |
据专家权威分析,试题“下列命题中是真命题的是()A.三角形的一个外角大于任何一个内角B...”主要考查你对 平行线的性质,平行线的公理,三角形的外角性质,命题,定理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理三角形的外角性质命题,定理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
考点名称:三角形的外角性质
- 三角形的外角:
三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。
∠1是三角形的外角。 三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
考点名称:命题,定理
- 命题的概念:
判断一件事情的语句,叫做命题。
命题的概念包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
公理:
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
定理:
通过真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。
一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。
如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。
在命题逻辑中,所有已证明的叙述都称为定理。
经过长期实践后公认为正确的命题叫做公理,用推理的方法判断为正确的命题叫做定理。 命题的分类:
(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。四种命题:
1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
相互关系:
1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
2.四种命题的真假关系:
①两个命题互为逆否命题,它们有相同的真假性。
②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)定理结构:
定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。
通常写作「若条件,则结论」。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。
逆定理:
若存在某叙述为A→B,其逆叙述就是B→A。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理。若某叙述是定理,其成立的逆叙述就是逆定理。
若某叙述和其逆叙述都为真,条件必要且充足。 若某叙述为真,其逆叙述为假,条件充足。 若某叙述为假,其逆叙述为真,条件必要。常用数学定理:
1、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 、加数+加数=和
和-一个加数=另一个加数
7 、被减数-减数=差
被减数-差=减数
差+减数=被减数
8 、因数×因数=积
积÷一个因数=另一个因数
9、 被除数÷除数=商
被除数÷商=除数
商×除数=被除数小学数学图形计算公式:
1 、正方形 C周长 S面积 a边长
周长=边长×4 ;C=4a;
面积=边长×边长; S=a×a
2 、正方体 V:体积 a:棱长
表面积=棱长×棱长×6; S棱=a×a×6 ;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |