有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②、图③、图④等-数学
题文
有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②、图③、图④等图形,这时他突然一想,∠B,∠D与∠BED之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”的功能,找到了这三个角之间的关系. (1)你能探讨出图①至图④各图中的∠B,∠D与∠BED之间的关系吗? (2)请从所得的四个关系中选一个,说明它成立的理由. |
答案
(1)①∠B+∠D=∠BED; ②∠B+∠D+∠BED=360°; ③∠BED=∠D-∠B; ④∠BED=∠B-∠D; (2)选图③. 过点E作EF∥AB,∵AB∥CD, ∴EF∥CD, ∴∠D=∠DEF,∠B=∠BEF, 又∵∠BED=∠DEF-∠BEF, ∴∠BED=∠D-∠B. |
据专家权威分析,试题“有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD..”主要考查你对 平行线的性质,平行线的公理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.-数学
下一篇:如图:已知a∥b,∠1=(2x+40)°,∠2=(130-3x)°求:∠1,∠2的度数.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |