有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②、图③、图④等-数学

题文

有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②、图③、图④等图形,这时他突然一想,∠B,∠D与∠BED之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”的功能,找到了这三个角之间的关系.
(1)你能探讨出图①至图④各图中的∠B,∠D与∠BED之间的关系吗?
(2)请从所得的四个关系中选一个,说明它成立的理由.
题型:解答题  难度:中档

答案

(1)①∠B+∠D=∠BED;
②∠B+∠D+∠BED=360°;
③∠BED=∠D-∠B;
④∠BED=∠B-∠D;

(2)选图③.
过点E作EF∥AB,∵AB∥CD,
∴EF∥CD,
∴∠D=∠DEF,∠B=∠BEF,
又∵∠BED=∠DEF-∠BEF,
∴∠BED=∠D-∠B.

据专家权威分析,试题“有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB,CD..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐