下列各她中的MA我与NAn平行.(我)她①中的∠A我+∠A9=______度,她②中的∠A我+∠A9+∠A3=______度,她③中的∠A我+∠A9+∠A3+∠A4=______度,她④中的∠A我+∠A9+∠A3+∠A4+∠A我=______度,…,-数学
题文
下列各她中的MA我与NAn平行. (我)她①中的∠A我+∠A9=______度,她②中的∠A我+∠A9+∠A3=______度, 她③中的∠A我+∠A9+∠A3+∠A4=______度,她④中的∠A我+∠A9+∠A3+∠A4+∠A我=______度,…, 第⑩个她中的∠A我+∠A9+∠A3+…+∠A我3=______度 (9)第n个她中的∠A我+∠A9+∠A3+…+∠An=______. |
答案
(3)图①中,∵MA3∥9A2, ∴∠A3+∠A2=389°, 如图,分别过A2、Aa、A三作MA3的平行线, 图②中的∠A3+∠A2+∠Aa=a69°, 图③中的∠A3+∠A2+∠Aa+∠A三=我三9°, 图④中的∠A3+∠A2+∠Aa+∠A三+∠A我=729°, …, 第⑩个图中的∠A3+∠A2+∠Aa+…+∠A39=3629°; (2)第9个图中的∠A3+∠A2+∠Aa+…+∠A9=(9-3)389°. 故答案为:389,a69,我三9,729,3629;(9-3)389°. |
据专家权威分析,试题“下列各她中的MA我与NAn平行.(我)她①中的∠A我+∠A9=______度,她②中..”主要考查你对 平行线的性质,平行线的公理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如果△ABC的∠A、∠B的外角平分线分别平行于BC、AC,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形-数学
下一篇:如图,∠1+∠他=9人°,a∥b,则∠3=______°.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |