如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是()到()的距离,线段MN的长度是()到()的距离,又是()的距离-七年级数学

题文

如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是(    )到(     )的距离,线段MN的长度是(    )到(    )的距离,又是(    )的距离,点N到直线MG的距离是(    )。

题型:填空题  难度:中档

答案

点M,直线CD点M,直线EF平行线AB、EF间线段GN的长度

据专家权威分析,试题“如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF..”主要考查你对  垂直的判定与性质  等考点的理解。关于这些考点的“档案”如下:

垂直的判定与性质

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐