如图,点A(0,4),点B(3,0),点P为线段AB上的一个动点,作PM⊥y轴于点M,作PN⊥x轴于点N,连接MN,当点P运动到什么位置时,MN的值最小?最小值是多少?求出此时PN的长.-数学

题文

如图,点A(0,4),点B(3,0),点P为线段AB上的一个动点,作PM⊥y轴于点M,作PN⊥x轴于点N,连接MN,当点P运动到什么位置时,MN的值最小?最小值是多少?求出此时PN的长.

题型:解答题  难度:中档

答案



如图,连接OP.
由已知可得:∠PMO=∠MON=∠ONP=90°.
∴四边形ONPM是矩形.
∴OP=MN,
在Rt△AOB中,当OP⊥AB时OP最短,即MN最小.
∵A(0,4),B(3,0),即AO=4,BO=3,
根据勾股定理可得AB=5.
∵S△AOB=
1
2
AO?BO=
1
2
AB?OP,
∴OP=
12
5

∴MN=
12
5

即当点P运动到使OP⊥AB于点P时,MN最小,最小值为
12
5

在Rt△POB中,根据勾股定理可得:BP=
9
5

∵S△OBP=
1
2
OP?BP=
1
2
OB?PN.
∴PN=
36
25

据专家权威分析,试题“如图,点A(0,4),点B(3,0),点P为线段AB上的一个动点,作PM⊥y轴..”主要考查你对  垂直的判定与性质,勾股定理,矩形,矩形的性质,矩形的判定,用坐标表示位置  等考点的理解。关于这些考点的“档案”如下:

垂直的判定与性质勾股定理矩形,矩形的性质,矩形的判定用坐标表示位置

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

考点名称:勾股定理

  • 勾股定理:
    直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
    勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。

  • 定理作用
    ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
    ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
    ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
    ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

  • 勾股定理的应用:
    数学
    从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
    勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

    生活
    勾股定理在生活中的应用也较广泛,举例说明如下:
    1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
    第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
    第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
    第三,屏幕底部应离观众席所在地面最少122厘米。
    屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
    2、2005年珠峰高度复测行动。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐