杨浦大桥的斜拉钢缆与桥面呈三角形结构,这是应用三角形的______性设计的,这个性质是根据三角形全等的______而产生的.-数学

首页 > 考试 > 数学 > 初中数学 > 三角形的稳定性/2020-01-10 / 加入收藏 / 阅读 [打印]

题文

杨浦大桥的斜拉钢缆与桥面呈三角形结构,这是应用三角形的______性设计的,这个性质是根据三角形全等的______而产生的.
题型:填空题  难度:中档

答案

杨浦大桥的斜拉钢缆与桥面呈三角形结构,这是应用三角形的 稳定性设计的.
因为只要给定了一个三角形的三条边,那么根据全等三角形的判定可知,当两个三角形三条边相等时,两个三角形全等,形状和大小不变,只是位置发生了变化,这样的三角形唯一确定. 故三角形具有稳定性,所以三角形的稳定性可以根据三角形全等的边边边(SSS)而产生.
故应填:稳定,边边边(SSS).

据专家权威分析,试题“杨浦大桥的斜拉钢缆与桥面呈三角形结构,这是应用三角形的______..”主要考查你对  三角形的稳定性,三角形全等的判定  等考点的理解。关于这些考点的“档案”如下:

三角形的稳定性三角形全等的判定

考点名称:三角形的稳定性

  • 三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
    三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

  • 求证过程:
    任取三角形两条边,则两条边的非公共端点被第三条边连接 。
    ∵第三条边不可伸缩或弯折 。
    ∴两端点距离固定 。
    ∴这两条边的夹角固定 。
    又∵这两条边是任取的 。
    ∴三角形三个角都固定,进而将三角形固定 。
    ∴三角形有稳定性 。

    利用三角形的稳定性建成的建筑:
    埃及金字塔、钢轨、三角形框架、起重机、三角形吊臂、屋顶、三角形钢架、钢架桥中的三角形。

考点名称:三角形全等的判定

  • 三角形全等判定定理:
    1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了
    三角形具有稳定性的原因。
    2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
    3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
    4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
    5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

  • 三角形全等的判定公理及推论:
    (1)“边角边”简称“SAS”
    (2)“角边角”简称“ASA”
    (3)“边边边”简称“SSS”
    (4)“角角边”简称“AAS”
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

    要验证全等三角形,不需验证所有边及所有角也对应地相同。
    以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
    ①S.S.S. (边、边、边):
    各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
    ②S.A.S. (边、角、边):
    各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
    ③A.S.A. (角、边、角):
    各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ④A.A.S. (角、角、边):
    各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ⑤R.H.S. / H.L. (直角、斜边、边):
    各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
    ⑥A.A.A. (角、角、角):
    各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
    ⑦A.S.S. (角、边、边):
    各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
    但若是直角三角形的话,应以R.H.S.来判定。

  • 解题技巧:
    一般来说考试中线段和角相等需要证明全等。
    因此我们可以来采取逆思维的方式。
    来想要证全等,则需要什么条件:要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
    然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
    有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。
    分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐