如图,在菱形ABCD中,E是AB边上的中点,作EF∥BC,交对角线AC于点F,若EF=4,则CD的长为()。-九年级数学

题文

如图,在菱形ABCD中,E是AB边上的中点,作EF∥BC,交对角线AC于点F,若EF=4,则CD的长为(    )。

题型:填空题  难度:中档

答案

8

据专家权威分析,试题“如图,在菱形ABCD中,E是AB边上的中点,作EF∥BC,交对角线AC于点..”主要考查你对  三角形的中线,角平分线,高线,垂直平分线,菱形,菱形的性质,菱形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形的中线,角平分线,高线,垂直平分线菱形,菱形的性质,菱形的判定

考点名称:三角形的中线,角平分线,高线,垂直平分线

  • 三角形的中线:
    在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。
    每条三角形中线分得的两个三角形面积相等。
    角平分线:
    三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
    三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
    高线:
    从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
    线段的垂直平分线:
    经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

    <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
    巧计方法:点到线段两端距离相等。

  • 三角形中线性质定理:
    1
    、三角形的三条中线都在三角形内。<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    2、三角形的三条中线长:

    ma=(1/2)2b2+2c2 -a2

    mb=(1/2)2c2 +2a2 -b

    mc=(1/2)2a2 +2b2 -c

    (ma,mb,mc分别为角A,B,C所对的中线长)

    3、三角形的三条中线交于一点,该点叫做三角形的重心。

    4、直角三角形斜边上的中线等于斜边的一半。

    5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

    定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

     

    角平分线线定理:
    定理1:在角平分线上的任意一点到这个角的两边距离相等。
    逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
    定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
    如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
    注:定理2的逆命题也成立。
    三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

     

    垂直平分线的性质:
    1.垂直平分线垂直且平分其所在线段。  
    2.垂直平分线上任意一点,到线段两端点的距离相等。  
    3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
    垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  • <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />垂直平分线的尺规作法:
    方法一:
    1、取线段的中点。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
    3、连接这两个交点。
    原理:等腰三角形的高垂直等分底边。
    方法二:
    1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
    2、连接这两个交点。原理:两点成一线。
    垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)

考点名称:菱形,菱形的性质,菱形的判定

  • 菱形的定义:
    在一个平面内,有一组邻边相等的平行四边形是菱形。

  • 菱形的性质:
    ①菱形具有平行四边形的一切性质;
    ②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
    ③菱形的四条边都相等;
    ④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
    ⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。

  • 菱形的判定:
    在同一平面内,
    (1)定义:有一组邻边相等的平行四边形是菱形
    (2)定理1:四边都相等的四边形是菱形
    (3)定理2:对角线互相垂直的平行四边形是菱形
    菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
    菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐