如图所示,在矩形ABCD中,AB=2,AD=。(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;(2)在(1)的条件下,若P为BC边上一点,且BP=2CP,连结EP并延长交AB的延长线于F。①求证:-九年级数学


垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  • <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />垂直平分线的尺规作法:
    方法一:
    1、取线段的中点。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
    3、连接这两个交点。
    原理:等腰三角形的高垂直等分底边。
    方法二:
    1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
    2、连接这两个交点。原理:两点成一线。
    垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)

  • 考点名称:矩形,矩形的性质,矩形的判定

    • 矩形:
      是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

    • 矩形的性质:
      1.矩形的4个内角都是直角;
      2.矩形的对角线相等且互相平分;
      3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
      4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
      5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
      6.顺次连接矩形各边中点得到的四边形是菱形

    • 矩形的判定
      ①定义:有一个角是直角的平行四边形是矩形
      ②定理1:有三个角是直角的四边形是矩形
      ③定理2:对角线相等的平行四边形是矩形
      ④对角线互相平分且相等的四边形是矩形
      矩形的面积:S矩形=长×宽=ab。

    • 黄金矩形:
      宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
      黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

    考点名称:图形旋转

    • 定义:
      在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
      图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

    • 图形旋转性质:
      (1)对应点到旋转中心的距离相等。
      (2)对应点与旋转中心所连线段的夹角等于旋转角。
      旋转对称中心
      把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐