给出下列四个结论:①菱形的四个顶点在同一个圆上;②正多边形都是中心对称图形;③三角形的外心到三个顶点的距离相等;④若圆心到直线上一点的距离恰好等于圆的半径,则该直线是-数学


多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
多边形也可以分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形
(此定理只适用于凸多边形,即平面多边形,空间多边形不适用)广义的多边形也包括五角星等图形。

  • 多边形定理:
    1、内角和定理:
    n边形的内角和等于(n-2)x180°
    可逆用:
    ·n边形的边=(内角和÷180°)+2
    ·过n边形一个顶点有(n-3)条对角线
    ·因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶点只能和n-3个其他的顶点之间做对角线,又因为每一条对角线都要连结两个顶点,所以要除以2。 
    n边形共有n×(n-3)÷2个对角线
    · n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
    推论:
    ·任意凸形多边形的外角和都等于360°。
    ·多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3)
    ·在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足
    反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)】

    2、外角和定理:
    n边形外角和等于n·180°-(n-2)·180°=360°
    多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐