已知⊙O的半径等于等边△ABC的高,△DEF是⊙O的内接等边三角形,则△ABC与△DEF的周长比为()A.1:2B.1:3C.3:2D.2:3-数学

题文

已知⊙O的半径等于等边△ABC的高,△DEF是⊙O的内接等边三角形,则△ABC与△DEF的周长比为(   )
A.1:2 B.1:3 C.3:2 D.2:3
题型:单选题  难度:中档

答案

D

据专家权威分析,试题“已知⊙O的半径等于等边△ABC的高,△DEF是⊙O的内接等边三角形,则△A..”主要考查你对  三角形的内心、外心、中心、重心,相似三角形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形的内心、外心、中心、重心相似三角形的判定

考点名称:三角形的内心、外心、中心、重心

  • 三角形的四心定义:
    1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
    内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
    2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
    外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
    3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
    4、重心:重心是三角形三边中线的交点。

  • 三角形的外心的性质:
    1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;
    2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
    3.锐角三角形的外心在三角形内;
    钝角三角形的外心在三角形外;
    直角三角形的外心与斜边的中点重合。

    在△ABC中
    4.OA=OB=OC=R
    5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
    6.S△ABC=abc/4R

    三角形的内心的性质:
    1.三角形的三条角平分线交于一点,该点即为三角形的内心
    2.三角形的内心到三边的距离相等,都等于内切圆半径r
    3.r=2S/(a+b+c)
    4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.
    5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2
    6.S△=[(a+b+c)r]/2 (r是内切圆半径)

    三角形的垂心的性质:
    1.锐角三角形的垂心在三角形内;
    直角三角形的垂心在直角顶点上;
    钝角三角形的垂心在三角形外。
    2.三角形的垂心是它垂足三角形的内心;或
    者说,三角形的内心是它旁心三角形的垂心。

    例如在△ABC中
    3. 垂心O关于三边的对称点,均在△ABC的外接圆圆上。
    4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO?OD=BO?OE=CO?OF
    5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
    6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。
    7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则 AB/AP?tanB+ AC/AQ?tanC=tanA+tanB+tanC
    8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
    9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
    10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
    11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
    12.西姆松(Simson)定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上
    13.设锐角△ABC内有一点P,那么P是垂心的充分必要条件是PB?PC?BC+PB?PA?AB+PA?PC?AC=AB?BC?CA。
    14.设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3。
    15.三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。

    三角形的重心的性质:
    1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
    2.重心和三角形3个顶点组成的3个三角形面积相等。
    3.重心到三角形3个顶点距离的平方和最小。
    4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);
    空间直角坐标系——横坐标:(X1+X2+X3)/3  纵坐标:(Y1+Y2+Y3)/3  竖坐标:(Z1+Z2+Z3)/3
    5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
    6.重心是三角形内到三边距离之积最大的点。

    三角形旁心的性质:
    1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。
    2、每个三角形都有三个旁心。
    3、旁心到三边的距离相等。
    三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。

考点名称:相似三角形的判定

  • 相似三角形:
    对应角相等,对应边成比例的两个三角形叫做相似三角形。
    互为相似形的三角形叫做相似三角形。

    例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

  • 相似三角形的判定:
    1.基本判定定理
    (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
    (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
    (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
    (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
    2.直角三角形判定定理
    (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
    (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
    3.一定相似:
    (1).两个全等的三角形
    (全等三角形是特殊的相似三角形,相似比为1:1)
    (2).两个等腰三角形
    (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
    (3).两个等边三角形
    (两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
    (4).直角三角形中由斜边的高形成的三个三角形。

  • 相似三角形判定方法:
    证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
    一、(预备定理)
    平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐