在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2).(1)在平面直角坐标系中,我们把横坐标、纵坐标都为整数的点称为整数点,请在第一象限内求作一个整数点C,使得AC=BC,-数学
题文
在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2). (1)在平面直角坐标系中,我们把横坐标、纵坐标都为整数的点称为整数点,请在第一象限内求作一个整数点C,使得AC=BC,且AC的长为小于4的无理数,则C点的坐标是______,△ABC的面积是______; (2)试求出△ABC外接圆的半径. |
答案
(1)作AB的垂直平分线,从图形中可以看出C点的坐标是C1(1,1),C2(5,5) 过A作AH⊥Y轴于H,过B作BM⊥Y轴于M,BF⊥X轴于F,过C作CG⊥Y轴于G,CE⊥X轴于E, 当C1(1,1)时,S△ABC=S梯形AHMB+S矩形BMOF-S梯形AHGC-S正方形OGCE-S梯形CEFB, =
=4; 当C2(5,5)时,同法可求S△ABC=4; 故答案为:(1,1)和(5,5),4. (2)如图,在△ABC中,作CD⊥AB于D,连接AE,E为圆心, ∵由勾股定理得:AC=BC=
∴CD=2
设半径AE=CE=x,则x2=(
∴半径x=
答:△ABC外接圆的半径是
|
据专家权威分析,试题“在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2).(1)在平..”主要考查你对 三角形的内心、外心、中心、重心 等考点的理解。关于这些考点的“档案”如下:
三角形的内心、外心、中心、重心
考点名称:三角形的内心、外心、中心、重心
- 三角形的四心定义:
1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。 - 三角形的外心的性质:
1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;
2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
3.锐角三角形的外心在三角形内;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:△ABC的内切圆⊙O与三边分别相切于D、E、F三点,AB=7,BC=12,CA=11,求AF、BD、CE的长.-数学
下一篇:直角三角形两直角边长分别为3和4,那么它的外接圆面积是______.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |