有一边长为23的cm的正三角形,若要剪一张圆形纸片能完成盖隹这个正三角形.则这个圆纸片的最小面积是______.-数学
题文
有一边长为2
|
答案
如图所示: 连接OB,OC,过点O作OD⊥BC于点D, ∵等边△ABC的边长为2
∴BD=
∴OB=BD?cos60°=
∴S=π?(
故答案为:
|
据专家权威分析,试题“有一边长为23的cm的正三角形,若要剪一张圆形纸片能完成盖隹这个..”主要考查你对 三角形的内心、外心、中心、重心 等考点的理解。关于这些考点的“档案”如下:
三角形的内心、外心、中心、重心
考点名称:三角形的内心、外心、中心、重心
- 三角形的四心定义:
1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。 - 三角形的外心的性质:
1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;
2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
3.锐角三角形的外心在三角形内;
钝角三角形的外心在三角形外;
直角三角形的外心与斜边的中点重合。
在△ABC中
4.OA=OB=OC=R
5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6.S△ABC=abc/4R
三角形的内心的性质:
1.三角形的三条角平分线交于一点,该点即为三角形的内心
2.三角形的内心到三边的距离相等,都等于内切圆半径r
3.r=2S/(a+b+c)
4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.
5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2
6.S△=[(a+b+c)r]/2 (r是内切圆半径)
三角形的垂心的性质:
1.锐角三角形的垂心在三角形内;
直角三角形的垂心在直角顶点上;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,△ABC是⊙O的内接三角形,点C是优弧AB上一点(点C不与A,B重合),设∠OAB=α,∠C=β,则α与β之间的关系是______°.-数学
下一篇:如图,是10个相同的正六边形紧密排列在同一平面上的情形.根据图中各点的位置,判断O点是下列哪一个三角形的外心?()A.△ABDB.△BCDC.△ACDD.△ADE-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |