如图1,在平面直角坐标系xoy中,Rt△AOB的斜边OB在x轴上,其中∠ABO=30°,OB=4.(1)直接写出,Rt△AOB的内心P的坐标;(2)如图2,若将Rt△AOB绕其直角顶点A顺时针旋转α度(0°<α<90°-数学

题文

如图1,在平面直角坐标系xoy中,Rt△AOB的斜边OB在x轴上,其中∠ABO=30°,OB=4.
(1)直接写出,Rt△AOB的内心P的坐标;
(2)如图2,若将Rt△AOB绕其直角顶点A顺时针旋转α度(0°<α<90°),得到Rt△ACD,直角边AD与x轴相交于点N,直角边AC与y轴相交于点M,连接MN.设△MON的面积为S△MON,△AOB的面积为S△AOB,以点M为圆心,MO为半径作⊙M,
①当直线AD与⊙M相切时,试探求S△MON与S△AOB之间的关系.
②当S△MON=
1
4
S△AOB时,试判断直线AD与⊙M的位置关系,并说明理由.
题型:解答题  难度:中档

答案

(1)r=
2+2

3
-4
2
=

3
-1
则P的坐标是:(3-

3

3
-1);

(2)①当AD与⊙M相切时,过M作MN⊥AO于点H,则MH=OM,此时,点H与点A重合.
∴OM=MA
∵∠MOA=α
∠AON=90°-α,∠OAN=90°-α
∠ONA=2α
∴α=30°
∵MN∥CD
∴△AMN∽△ACD
S△MON
S△ACD
=(
AN
AD
2=(
2
2

3
2=
1
3

②∵S△AMN=
1
4
S△AOB=
1
4
S△ACD
1
2
OM?ON
1
2
×2×2

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐