下列说法正确的是[]A.正有理数和负有理数统称为有理数B.符号不同的两个数叫做互为相反数C.近似数1.8与1.80的精确度不同,有效数字的个数也不同D.有最大的有理数,也有最小-七年级数学
题文
下列说法正确的是 |
[ ] |
A.正有理数和负有理数统称为有理数 B.符号不同的两个数叫做互为相反数 C.近似数1.8与1.80的精确度不同,有效数字的个数也不同 D.有最大的有理数,也有最小的有理数 |
答案
C |
据专家权威分析,试题“下列说法正确的是[]A.正有理数和负有理数统称为有理数B.符号不同..”主要考查你对 近似数和有效数字,有理数定义及分类,相反数 等考点的理解。关于这些考点的“档案”如下:
近似数和有效数字有理数定义及分类相反数
考点名称:近似数和有效数字
- 近似数:
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
如:我国的人口无法计算准确数目,但是可以说出一个近似数。
比如说我国人口有13亿,13亿就是一个近似数。
有效数字:
是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。例如:
3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。
精确度:
近似数与准确数的接近程度,可以用精确度表示。
(1)一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;
(2)规定有效数字的个数,也是对近似数精确程度的一种要求。 - 有效数字注意:
①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;
②对于绝对值较大的数取近似值时,结果一般用科学计数法来表示,如:8 90 000(保留三个有效数字)的近似值,得8 903 000≈8.90×106。
③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。 - 有效数字的舍入规则:
1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1。
3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
如将下组数据保留三位
45.77=45.8 43.03=43.0
38.25=38.2 47.15=47.2
考点名称:有理数定义及分类
- 有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。 - 有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数
考点名称:相反数
相反数的定义:
像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。相反数的特性:
1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
- (互为)相反数的代数意义:
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。
相反数的判别:
我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。
多重符号的化简:
1、在一个数前面添加一个“+”好,所得的数与原数相同。
2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |