李国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数,为什么?如果误差要求小于0.1米,那么边长x的取值是多少?-数学

题文

李国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数,为什么?如果误差要求小于0.1米,那么边长x的取值是多少?
题型:解答题  难度:中档

答案

边长x=

28
=2

7
是无理数,
2

7
≈5.3m.

据专家权威分析,试题“李国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下..”主要考查你对  近似数和有效数字,算术平方根  等考点的理解。关于这些考点的“档案”如下:

近似数和有效数字算术平方根

考点名称:近似数和有效数字

  • 近似数:
    一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
    如:我国的人口无法计算准确数目,但是可以说出一个近似数。
    比如说我国人口有13亿,13亿就是一个近似数。

    有效数字:
    是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。例如:
    3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。

    精确度:
    近似数与准确数的接近程度,可以用精确度表示。
    (1)一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;
    (2)规定有效数字的个数,也是对近似数精确程度的一种要求。

  • 有效数字注意:
    ①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;
    ②对于绝对值较大的数取近似值时,结果一般用科学计数法来表示,如:8 90 000(保留三个有效数字)的近似值,得8 903 000≈8.90×106
    ③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。

  • 有效数字的舍入规则:
    1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
    2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1。
    3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
    如将下组数据保留三位
    45.77=45.8                               43.03=43.0
    38.25=38.2                               47.15=47.2

考点名称:算术平方根

  • 概念:
    若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
    规定:0的算术平方根是0。
    表示:a的算术平方根记为,读作“根号a”。
    注:只有非负数有算术平方根,而且只有一个算术平方根。

  • 平方根和算术平方根的区别与联系:
    区别:
    (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
    (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
    (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
    联系:
    (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
    (2)存在条件相同:只有非负数才有平方根和算术平方根。
    (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
    注:
    (1)平方和开平方的关系是互为逆运算;
    (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
    (3)开方的方式是根号形式。

  •  

  • 电脑根号的打法:
    比较通用:
    左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
    运用Word的域命令在Word中根号:
    首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
    1.平方根
    一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
    2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
    算术平方根是定义在平方根基础上,因此负数没有算术平方根。
    3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。