如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)∠A在什么范围-九年级数学
题文
如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F. |
(1)求证:BF=FD; (2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由; (3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=DA,并说明理由. |
答案
(1)在中,,,, (2)由(1)BF=FD,而BC=CA, 即 ; (3) 又F为BD中点,H为DF的中点. GH为DF的中垂线 又 |
据专家权威分析,试题“如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点..”主要考查你对 直角三角形的性质及判定,梯形,梯形的中位线,平行线分线段成比例 等考点的理解。关于这些考点的“档案”如下:
直角三角形的性质及判定梯形,梯形的中位线平行线分线段成比例
考点名称:直角三角形的性质及判定
- 直角三角形定义:
有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。 直角三角形性质:
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如果直角三角形的两条直角边分别等于5cm和12cm,那么这个直角三角形斜边上的中线长等于()cm。-九年级数学
下一篇:一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a。(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |