一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a。(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积-九年级数学

题文

一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a。

     

(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为_____,周长为_____;
(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_____,周长为____;
(3)如果将△MNK绕M旋转到不同于图1、图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证。
题型:解答题  难度:中档

答案

解:(1)
(2)
(3)猜想:重叠部分的面积为
理由如下:
    过点M分别做AC、BC的垂线MH、MG,垂足为H、G,
为说明方便,不妨设MN与AC的交点为E,MK与BC的交点为F,
    由于M是△ABC斜边AB的中点,AC=BC=
所以MH=MG=
    又因为 ∠HME=∠GMF,
所以 Rt△MHE≌Rt△MGF,
因此阴影部分的面积等于正方形CGMH的面积,
而正方形CGMH的面积是MG·MH=×=
所以阴影部分的面积是

据专家权威分析,试题“一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK..”主要考查你对  直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定,全等三角形的性质,正方形,正方形的性质,正方形的判定,图形旋转  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定等腰三角形的性质,等腰三角形的判定全等三角形的性质正方形,正方形的性质,正方形的判定图形旋转

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐