一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a。(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积-九年级数学


7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

  • 考点名称:全等三角形的性质

    • 全等三角形:
      两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
      全等三角形的对应边相等,对应角相等。
      ①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
      ②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
      ③有公共边的,公共边一定是对应边;
      ④有公共角的,角一定是对应角;
      ⑤有对顶角的,对顶角一定是对应角。

    • 全等三角形的性质:
      1.全等三角形的对应角相等。
      2.全等三角形的对应边相等。
      3.全等三角形的对应边上的高对应相等。
      4.全等三角形的对应角的角平分线相等。
      5.全等三角形的对应边上的中线相等。
      6.全等三角形面积相等。
      7.全等三角形周长相等。
      8.全等三角形的对应角的三角函数值相等。

    •  

    考点名称:正方形,正方形的性质,正方形的判定

    • 正方形的定义:
      有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
      特殊的长方形。
      四条边都相等且四个角都是直角的四边形叫做正方形。
      有一组邻边相等的矩形是正方形。
      有一个角为直角的菱形是正方形。
      对角线平分且相等,并且对角线互相垂直的四边形为正方形。
      对角线相等的菱形是正方形。

    • 正方形的性质:
      1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
      2、内角:四个角都是90°;
      3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
      4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
      5、正方形具有平行四边形、菱形、矩形的一切性质;
      6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
      正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
      7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
      正方形外接圆面积大约是正方形面积的157%。
      8、正方形是特殊的长方形。

    • 正方形的判定:
      判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
      1:对角线相等的菱形是正方形。
      2:有一个角为直角的菱形是正方形。
      3:对角线互相垂直的矩形是正方形。
      4:一组邻边相等的矩形是正方形。
      5:一组邻边相等且有一个角是直角的平行四边形是正方形。
      6:对角线互相垂直且相等的平行四边形是正方形。
      7:对角线相等且互相垂直平分的四边形是正方形。
      8:一组邻边相等,有三个角是直角的四边形是正方形。
      9:既是菱形又是矩形的四边形是正方形。

      有关计算公式:
      若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
      正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
      正方形周长计算公式: C=4a 。
      S正方形=。(正方形边长为a,对角线长为b)

    考点名称:图形旋转

    • 定义:
      在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
      图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

    • 图形旋转性质:
      (1)对应点到旋转中心的距离相等。
      (2)对应点与旋转中心所连线段的夹角等于旋转角。
      旋转对称中心
      把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐