如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度-九年级数学

题文

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动。伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E。点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止。设点P、Q运动的时间是t秒(t>0),
(1)当t=2时,AP=________,点Q到AC的距离是________;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值。若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值。
题型:解答题  难度:偏难

答案

解:(1)1;
(2)作QF⊥AC于点F,AQ=CP= t,
∴AP=3-t,
由△AQF∽△ABC,
,∴
,即
(3)能。
①当DE∥QB时,如图1,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形,
此时∠AQP=90°,
由△APQ∽△ABC,得
,解得
②如图2,当PQ∥BC时,DE⊥BC,
四边形QBED是直角梯形.此时∠APQ =90°,
 由△AQP∽△ABC,得
,解得




(4)

据专家权威分析,试题“如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒..”主要考查你对  直角三角形的性质及判定,求二次函数的解析式及二次函数的应用,勾股定理,梯形,梯形的中位线,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定求二次函数的解析式及二次函数的应用勾股定理梯形,梯形的中位线相似三角形的性质

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐