如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.-数学

题文

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上.
(1)求证:△ADE≌△BGF;
(2)若正方形DEFG的面积为16cm2,求AC的长.

题型:解答题  难度:中档

答案



(1)证明:∵△ABC是等腰直角三角形,∠C=90°,
∴∠B=∠A=45°,
∵四边形DEFG是正方形,
∴∠BFG=∠AED=90°,
故可得出∠BGF=∠ADE=45°,GF=ED,
∵在△ADE与△BGF中,

∠BFG=∠AED
GF=DE
∠BGF=∠ADE

∴△ADE≌△BGF(ASA);


(2)过点C作CG⊥AB于点G,
∵正方形DEFG的面积为16cm2
∴DE=AE=4cm,
∴AB=3DE=12cm,
∵△ABC是等腰直角三角形,CG⊥AB,
∴AG=
1
2
AB=
1
2
×12=6cm,
在Rt△ADE中,
∵DE=AE=4cm,
∴AD=

AE2+DE2
=

42+42
=4

2
cm,
∵CG⊥AB,DE⊥AB,
∴CG∥DE,
∴△ADE∽△ACG,
AE
AG
=
AD
AC
4
6
=
4

2
AC

解得AC=6

2
cm.

据专家权威分析,试题“如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E..”主要考查你对  直角三角形的性质及判定  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐