勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在-数学

题文

勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在上图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=8.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于______.

题型:填空题  难度:中档

答案



延长BA交QR于点M,连接AR,AP.
∵AC=GC,BC=FC,∠ACB=∠GCF,
∴△ABC≌△GFC,
∴∠CGF=∠BAC=30°,
∴∠HGQ=60°,
∵∠HAC=∠BAD=90°,
∴∠BAC+∠DAH=180°,
又∵AD∥QR,
∴∠RHA+∠DAH=180°,
∴∠RHA=∠BAC=30°,
∴∠QHG=60°,
∴∠Q=∠QHG=∠QGH=60°,
∴△QHG是等边三角形.
AC=AB?cos30°=8×

3
2
=4

3

则QH=HA=HG=AC=4

3

在直角△HMA中,HM=AH?sin60°=4

3
×

3
2
=6.AM=HA?cos60°=2

3

在直角△AMR中,MR=AD=AB=8.
∴QR=QH+HM+MR=4

3
+6+8=14+4

3

∴QP=2QR=28+8

3

PR=QR?

3
=14

3
+12.
∴△PQR的周长等于RP+QP+QR=54+26

3

故答案为:54+26

3

据专家权威分析,试题“勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了..”主要考查你对  直角三角形的性质及判定,勾股定理  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定勾股定理

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐