如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.(1)在图1中,∠AOC的度数为______;与线段BO相等的线段为______;(2)将图1中的△AOC绕点O顺时针旋转得到△A1OC1,如图2-数学

题文

如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.
(1)在图1中,∠AOC的度数为______;与线段BO相等的线段为______;
(2)将图1中的△AOC绕点O顺时针旋转得到△A1OC1,如图2,连接AA1,BC1,试判断S△AOA1与S△BOC1的大小关系?并给出你的证明;
(3)将图1中的△ABO绕点B顺时针旋转得到△MBN,如图3,点P为MC的中点,连接PA、PN,求证:PA=PN.


题型:解答题  难度:中档

答案

(1)∵AB=AC,AO是∠BAC的角平分线,
∴AO⊥BC,
∴∠AOC=90°,BO=OC,
∵∠BAC=90°,
∴BO=OA=OC;

(2)S△AOA1=S△BOC1


证明:过点O作MN⊥BC1于M,交AA1于N,
∵OB=OC1
∴BM=C1M,∠BOM=∠C1OM,
∵∠AOB=∠A1OC1=90°,
∴∠AON+∠BOM=∠A1ON+∠C1OM=90°,
∴∠AON=∠A1ON,
∵AO=A1O,
∴ON⊥AA1
∴∠A1NO=90°=∠OMC1
∵在△OMC1和△A1ON中

∠A1NO=∠C1MO
∠NA1O=∠C1OM
A1O=OC1

∴△A1ON≌△OC1M(AAS),
∴△A1ON和△OC1M的面积相等,
同理可证△AON和△OBM的面积相等,
∴S△AOA1=S△BOC1

(3)证明:延长NP至E,使PE=NP,连接CE,AN,AE,
∵点P为MC的中点,
∴MP=CP,
∵在△PCE和△PMN中

CP=PM
∠EPC=∠MPN
PE=NP

∴△PCE≌△PMN(SAS),
∴CE=NM=BN,∠MNP=∠PEC,
∴CE∥MN,
设EC的延长线交BN的延长线于O,
∴∠BNM=∠BOC=90°,
又∵∠BAC=90°,
∴A、B、O、C四点共圆,
∴在四边形ABOC中,∠ACE=∠ABN,
∵在△ABN和△ACE中

AB=AC
∠ABN=∠ACE
BN=CE
                                          
∴△ABN≌△ACE(SAS),
∴AN=AE,∠ABN=∠EAC,
∵∠BAC=90°=∠BAN+∠NAC=∠EAC+∠NAC=∠EAN,
即∠EAN=90°,
∵点P为NE的中点,
∴PA=PN(直角三角形斜边上中线等于斜边的一半).

据专家权威分析,试题“如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.(1)在图..”主要考查你对  直角三角形的性质及判定,图形旋转  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定图形旋转

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:图形旋转

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐