阅读:定理“直角三角形斜边上的中线等于斜边的一半”,如图,Rt△ABC中,D为AB中点,则CD=AD=BD=12AB.(此定理在解决下面的问题中要用到)应用:如图1,在△ABC中,点P为BC边中点,-数学

题文

阅读:定理“直角三角形斜边上的中线等于斜边的一半”,如图,Rt△ABC中,D为AB中点,则CD=AD=BD=
1
2
AB.(此定理在解决下面的问题中要用到)
应用:如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明:若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.


题型:解答题  难度:中档

答案

(1)①证明:∵BM⊥直线a,CN⊥直线a,
∴∠BMN=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠PCE,
∵点P为BC边中点,
∴BP=PC,
在△BPM和△CPE中,

∠MBP=∠PCE
BP=PC
∠BPM=∠CPE

∴△BPM≌△CPE(ASA);
②∵△BPM≌△CPE,
∴MP=PE,
∵∠MNE=90°,
∴PN=PM;

(2)PM=PN还成立.
理由如下:如图3,延长MP与NC延长线交于F,


∵BM⊥直线a,CN⊥直线a,
∴BM∥FN,
∴∠BMP=∠PFC,
∵点P为BC边中点,
∴BP=PC,
在△BMP和△CFP中,

∠BMP=∠PFC
BP=PC
∠BPM=∠CPF

∴△BMP≌△CFP(ASA),
∴PM=PF,
∵∠MNF=90°,
∴PM=PN;

(3)四边形MBCN是矩形,PM=PN还成立.
理由如下:如图4,∵a∥BC,BM⊥a,CN⊥a,
∴BM∥CN,BM=CN,
∴四边形MBCN是矩形,
∵点P是BC的中点,
∴BP=CP,
在△BMP和△CMN中,

BM=CN
∠PBM=∠PCN=90°
BP=CP

∴△BMP≌△CPN(SAS),
∴PM=PN.

据专家权威分析,试题“阅读:定理“直角三角形斜边上的中线等于斜边的一半”,如图,Rt△AB..”主要考查你对  直角三角形的性质及判定,矩形,矩形的性质,矩形的判定,图形旋转  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定矩形,矩形的性质,矩形的判定图形旋转

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐