已知矩形EFGC(如图1)的一边EC和对角线CF分别与矩形ABCD的对角线AC及边BC重合.连接AF,取AF的中点为M,连接BM、EM.(1)求证:MB=ME;(2)如图2,若将(1)中的矩形EFGC绕着点C旋转-数学


如图已知△ABC中,D,E分别是AB,AC两边中点。
则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 考点名称:矩形,矩形的性质,矩形的判定

    • 矩形:
      是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

    • 矩形的性质:
      1.矩形的4个内角都是直角;
      2.矩形的对角线相等且互相平分;
      3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
      4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
      5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
      6.顺次连接矩形各边中点得到的四边形是菱形

    • 矩形的判定
      ①定义:有一个角是直角的平行四边形是矩形
      ②定理1:有三个角是直角的四边形是矩形
      ③定理2:对角线相等的平行四边形是矩形
      ④对角线互相平分且相等的四边形是矩形
      矩形的面积:S矩形=长×宽=ab。

    • 黄金矩形:
      宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
      黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐