在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有()①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,-数学
题文
在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有( ) ①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形; ④BE+CD=BC;⑤当∠ABC=45°时,BE=
![]() |
题文
在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有( ) ①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形; ④BE+CD=BC;⑤当∠ABC=45°时,BE=
![]() |
题型:单选题 难度:中档
答案
①∵BD、CE为高,∴△BEC、△BDC是直角三角形. ∵F是BC的中点,∴EF=DF=
②∵∠ADB=∠AEC=90°,∠A公共,∴△ABD∽△ACE,得AD:AB=AE:AC.故正确; ③∵∠A=60°,∴∠ABC+∠ACB=120°. ∵F是BC的中点,∴EF=BF,DF=CF.∴∠ABF=∠BEF,∠ACB=∠CDF. ∴∠BFE+∠CFD=120°,∠EFD=60°.又EF=FD,∴△DEF是等边三角形.故正确; ④若BE+CD=BC,则可在BC上截取BH=BE,则HC=CD. ∵∠A=60°,∴∠ABC+∠ACB=120°.又∵BH=BE,HC=CD, ∴∠BHE+∠CHD=120°,∠EHD=60°. ![]() 所以存在满足条件的点,假设成立,但一般情况不一定成立,故错误; ⑤当∠ABC=45°时,在Rt△BCE中,BC=
由B、C、D、E四点共圆可知,△ADE∽△ABC, ∴
故此题选C. |
据专家权威分析,试题“在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、..”主要考查你对 直角三角形的性质及判定,等边三角形 等考点的理解。关于这些考点的“档案”如下:
直角三角形的性质及判定等边三角形
考点名称:直角三角形的性质及判定
直角三角形性质:
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |