如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)∠A在什么范围-数学


如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 考点名称:梯形,梯形的中位线

    • 梯形的定义:
      一组对边平行,另一组对边不平行的四边形叫做梯形。
      梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
      梯形的中位线:
      连结梯形两腰的中点的线段。 

    • 梯形性质:
      ①梯形的上下两底平行;
      ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
      ③等腰梯形对角线相等。

      梯形判定:
      1.一组对边平行,另一组对边不平行的四边形是梯形。
      2.一组对边平行且不相等的四边形是梯形。

      梯形中位线定理:
      梯形中位线平行于两底,并且等于两底和的一半。
      梯形中位线×高=(上底+下底)×高=梯形面积
      梯形中位线到上下底的距离相等
      中位线长度=(上底+下底)

      梯形的周长与面积
      梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
      等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
      梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
      变形1:h=2s÷(a+b);
      变形2:a=2s÷h-b;
      变形3:b=2s÷h-a。
      另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
      对角线互相垂直的梯形面积为:对角线×对角线÷2。

    • 梯形的分类


      等腰梯形:两腰相等的梯形。
      直角梯形:有一个角是直角的梯形。

      等腰梯形的性质:
      (1)等腰梯形的同一底边上的两个角相等。
      (2)等腰梯形的对角线相等。
      (3)等腰梯形是轴对称图形。

      等腰梯形的判定:
      (1)定义:两腰相等的梯形是等腰梯形
      (2)定理:在同一底上的两个角相等的梯形是等腰梯形
      (3)对角线相等的梯形是等腰梯形。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐