已知:如图,梯形ABCD中,AD∥BC,E是BC的中点,∠BEA=∠DEA,连接AE、BD相交于点F,BD⊥CD.(1)求证:AE=CD;(2)求证:四边形ABED是菱形.-数学

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

    梯形的周长与面积
    梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
    等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
    梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
    变形1:h=2s÷(a+b);
    变形2:a=2s÷h-b;
    变形3:b=2s÷h-a。
    另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
    对角线互相垂直的梯形面积为:对角线×对角线÷2。

  • 梯形的分类


    等腰梯形:两腰相等的梯形。
    直角梯形:有一个角是直角的梯形。

    等腰梯形的性质:
    (1)等腰梯形的同一底边上的两个角相等。
    (2)等腰梯形的对角线相等。
    (3)等腰梯形是轴对称图形。

    等腰梯形的判定:
    (1)定义:两腰相等的梯形是等腰梯形
    (2)定理:在同一底上的两个角相等的梯形是等腰梯形
    (3)对角线相等的梯形是等腰梯形。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐