如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,(1)若△APB为直角三角形,求PB的长;(2)若△APB为等腰三角形,求△APB的面积.-数学

题文

如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,
(1)若△APB为直角三角形,求PB的长;
(2)若△APB为等腰三角形,求△APB的面积.

题型:解答题  难度:中档

答案



(1)△APB是直角三角形有两种情况:
作直径AP2、BPl,连接PlA、P2B,
∴P2B=AB÷tan∠APB=5,
PlB=AP2=5

5

所以PB的长为5或5

5


(2)△APB为等腰三角形时有三种情况:
①PA=PB,
∵∠AOH=∠APB,AB=10
∴OH=
5
2
,∴OP=
5

5
2
,PH=
5+5

5
2

∴S△APB=
25+25

5
2

②BA=BP,
∴∠GAB=∠APB
在⊙O上取一点P4使BP4=BA,连接AP4交P1B于G
设AG=k
∵tan∠APB=2
∴BG=2k
由勾股定理得k=2

5

∴S△APB=40;
③AB=AP与BA=BP情况相同
∴S△APB=40.

据专家权威分析,试题“如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,(..”主要考查你对  直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定,勾股定理,圆心角,圆周角,弧和弦  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定等腰三角形的性质,等腰三角形的判定勾股定理圆心角,圆周角,弧和弦

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐