如(1)图,由已知AB⊥BD,ED⊥BD,AB=CD,BC=DE可证得AC⊥CE,若将CD沿CB方向平移到图(2)(3)(4)(5)的情形,其余条件不变,则这四种情况下,结论AC1⊥C2E仍然成立的有()A.1个B.2个-数学
题文
如(1)图,由已知AB⊥BD,ED⊥BD,AB=CD,BC=DE可证得AC⊥CE,若将CD沿CB方向平移到图(2)(3)(4)(5)的情形,其余条件不变,则这四种情况下,结论AC1⊥C2E仍然成立的有( )
|
题文
如(1)图,由已知AB⊥BD,ED⊥BD,AB=CD,BC=DE可证得AC⊥CE,若将CD沿CB方向平移到图(2)(3)(4)(5)的情形,其余条件不变,则这四种情况下,结论AC1⊥C2E仍然成立的有( )
|
题型:单选题 难度:中档
答案
由题意可得,△ABC≌△CDE,∠ECD+∠ACB=90°, 而(2),(3),(4),(5)均满足∠EC2D+∠AC1B=90° ∴(2),(3),(4),(5)均成立 故选D. |
据专家权威分析,试题“如(1)图,由已知AB⊥BD,ED⊥BD,AB=CD,BC=DE可证得AC⊥CE,若将CD..”主要考查你对 直角三角形的性质及判定,勾股定理,平移 等考点的理解。关于这些考点的“档案”如下:
直角三角形的性质及判定勾股定理平移
考点名称:直角三角形的性质及判定
直角三角形性质:
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
考点名称:勾股定理
考点名称:平移
平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |