已知,如图:正方形ABCD,AC是对角线,点P是AC上一点,连接PB,以PB为腰作等腰直角三角形△PBE,PE与直线AB相交于点F,连接PD,设AP=nPC.(1)如图1直接写出:PDPE=______(2)如图-数学

题文

已知,如图:正方形ABCD,AC是对角线,点P是AC上一点,连接PB,以PB为腰

作等腰直角三角形△PBE,PE与直线AB相交于点F,连接PD,设AP=nPC.
(1)如图1直接写出:
PD
PE
=______
(2)如图1当n=2时,求
PF
PE
的值.
(3)如图2:当点P在AC延长线上,其它条件均不变,当n=______时,PE=5EF.
题型:解答题  难度:中档

答案

(1)

2
2


(2)∵正方形ABCD,AC为其对角线,
∴FAP=∠BCP=45°,
∵等腰Rt△EBP,
∴∠E=∠BPF=∠PAF,
∵∠EFB=∠AFP,
∴∠EBF=∠PBC,
∵∠EBP=∠ABC=90°,
∴∠EBF=∠PBC,
∴△PFA∽△BPC,△EBP∽△ABC,
∴AP:BC=PF:BP,EP:AC=BP:BC,
∴BP:BC=PF:AP,
∴EP:AC=PF:AP,即PF:PE=AP:AC,
∵n=2,
∴AP=2PC,
∴AP:AC=2:3,
∴PF:PE=AP:AC=2:3;

(3)∵正方形ABCD,AC为其对角线,
∴∠BAC=∠BCA=45°,
∵等腰直角三角形EBP,
∴∠BEP=∠BPE=45°,
∴△EBP∽△ABC,
∴EP:AC=BP:BC,
∴∠FBE=∠FPA,
∵∠ABC=∠EBP=90°,
∴∠FBE=∠PBC,
∴∠PBC=∠FPA,
∴△PBC∽△FPA,
∴AP:BC=PF:BP,
∴BP:BC=PF:AP,
∵BP:BC=PE:AC,
∴PF:AP=PE:AC,即PE:PF=AC:AP,
∵PE=5EF,
∴PE:PF=5:6,
∴AC:AP=5:6,
∴AP:PC=6:1,
∵AP=nPC,
∴n=6,
∴当n=6时,PE=5EF.
故答案为

2
2
,6.

据专家权威分析,试题“已知,如图:正方形ABCD,AC是对角线,点P是AC上一点,连接PB,以..”主要考查你对  直角三角形的性质及判定,正方形,正方形的性质,正方形的判定  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定正方形,正方形的性质,正方形的判定

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:正方形,正方形的性质,正方形的判定

  • 正方形的定义:
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    特殊的长方形。
    四条边都相等且四个角都是直角的四边形叫做正方形。
    有一组邻边相等的矩形是正方形。
    有一个角为直角的菱形是正方形。
    对角线平分且相等,并且对角线互相垂直的四边形为正方形。
    对角线相等的菱形是正方形。

  • 正方形的性质:
    1、边:两组对边分别平行;四条边都相等;相邻边互相垂直

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐