如图,正方形ABCD的边长为1,其中DE,EF,FG的圆心依次是点A,B,C.连接GB和FD,则GB与FD的关系是______.-数学

题文

如图,正方形ABCD的边长为1,其中






DE






EF






FG
的圆心依次是点A,B,C.连接GB和FD,则GB与FD的关系是______.

题型:填空题  难度:偏易

答案

证明:∵BC=DC,CG=CF,又∠FCD=∠GCB=90°,
∴△FCD≌△GCB,
∴GB=FD,∠G=∠F,
∴∠G+∠CDF=∠F+∠CDF=90°,
即GB与FD的关系是相等且互相垂直.
故填空答案:相等且互相垂直.

据专家权威分析,试题“如图,正方形ABCD的边长为1,其中DE,EF,FG的圆心依次是点A,B,..”主要考查你对  直角三角形的性质及判定,圆的认识  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定圆的认识

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:圆的认识

  • 圆的定义:
    圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
    在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

    相关定义:
    1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。
    2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
    3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
    4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
    5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
    6 由两条半径和一段弧围成的图形叫做扇形。
    7 由弦和它所对的一段弧围成的图形叫做弓形。
    8 顶点在圆心上的角叫做圆心角。
    9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
    10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
    11圆周角等于相同弧所对的圆心角的一半。
    12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

    圆的集合定义:

    圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。

  • 圆的字母表示:
    以点O为圆心的圆记作“⊙O”,读作O”。
    圆—⊙ ;
    半径—r或R(在环形圆中外环半径表示的字母);
    弧—⌒ ;
    直径—d ;
    扇形弧长—L ;                            
    周长—C ;                              
    面积—S。

    圆的性质:
    (1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐