如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B不重合),过点D作DE⊥AB交射线AC于E,连接BE,点F是BE的中点,连接CD、CF、DF.(1)当点E在边AC上(点E-数学

题文

如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B不重合),过点D作DE⊥AB交射线AC于E,连接BE,点F是BE的中点,连接CD、CF、DF.
(1)当点E在边AC上(点E与点C不重合)时,设AD=x,CE=y.
①直接写出y关于x的函数关系式及定义域;
②求证:△CDF是等边三角形;
(2)如果BE=2

7
,请直接写出AD的长.
题型:解答题  难度:中档

答案

(1)①∵∠A=60°,DE⊥AB,
∴∠AED=90°-60°=30°,
∴AE=2AD=2x,
又AC=AE+CE,
即3=2x+y,
∴y=-2x+3;定义域:0<x<
3
2
;…(2分)
②证明:在Rt△ECB和Rt△EDB中,∠ECB=∠EDB=90°.
∵点F是BE的中点,
∴CF=DF=
1
2
BE=BF.…(1分)
∴∠FCB=∠CBF,∠FDB=∠DBF.…(1分)
∴∠CFE=2∠CBF,∠DFE=2∠DBF.
∴∠CFE+∠DFE=2(∠CBF+∠DBF).
即∠CFD=2∠CBA.…(1分)
∵∠A=60°,∴∠ABC=90°-60°=30°.
∴∠CFD=60°.…(1分)
∴△CDF是等边三角形.…(1分)

(2)∵∠ACB=90°,∠A=60°,AC=3,
∴BC=3tan60°=3

3

在Rt△BCE中,CE=

BE2-BC2
=

(2

7
)2-(3

3
)2
=1,
当点E在AC上时,AD=
1
2
AE=
1
2
(3-1)=1,
当点E在射线AC上时,AD=
1
2
AE=
1
2
(3+1)=2,
∴AD的长是1或2. …(一解正确得2分;两解正确得3分)

据专家权威分析,试题“如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点..”主要考查你对  直角三角形的性质及判定  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐