在等腰三角形ABC中,AB=AC,其一腰上的高为h。M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2(1)请你结合图形1来证明:h1+h2=h(2)当点M在BC延长线上时,h1、h2、h之间-九年级数学

题文

在等腰三角形ABC中,AB=AC,其一腰上的高为h。 M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形1来证明:h1+h2=h

(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论,请你画出图形,并直接写出结论不必证明。
(3)利用以上结论解答,如图2在平面直角坐标系中有两条直线l1:y=x+3 , l2:y=-3x+3,若l2上的一点M到l1的距离是,求点M的坐标。

题型:探究题  难度:偏难

答案

解:(1)证明“略”
(2) 画图“略”,h1-h2=h
(3)解AC=5 ,所以AB=AC,即△ABC为等腰三角形
(ⅰ)当点M在BC边上时,由h1+h2=h求得此时M(
(ⅱ)当点M在CB延长线上时,由h1-h2=h求得此时M(-
综合(ⅰ)、(ⅱ)知:点M的坐标为 M()或(-

据专家权威分析,试题“在等腰三角形ABC中,AB=AC,其一腰上的高为h。M是底边BC上的任意..”主要考查你对  等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐